
DEFENSE INFORMATION INFRASTRUCTURE (DII)

COMMON OPERATING ENVIRONMENT (COE)

Supplemental Consolidated DCE Application Development
Tools Programmer’s Guide

Version 1.0.0.0

December 20, 1996

Prepared by:
LOGICON, Inc.

1831 Wiehle Avenue, Suite 300
Reston, Virginia 22090

Distributed Computing Environment

Supplemental Consolidated DCE 1.1 Application
Development Tools Programmer’s Guide

 Version 1.0.0.0

December 20, 1996

Defense Information Systems Agency
Joint Interoperability and Engineering Organization

Center for Standards
Information Processing Standards Department

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

i

TABLE OF CONTENTS

1. INTRODUCTION ..1-1

1.1 Background... 1-1

1.2 Scope ... 1-1

1.3 Applicability ... 1-1

1.4 Report Organization... 1-2

1.5 References... 1-2

2. OVERVIEW OF THE DCECOE LIBRARY ...2-1

2.1 Purpose.. 2-1

2.2 Basic Concepts .. 2-1
2.2.1 Concerns in Building DCE Applications ... 2-1

2.2.1.1 Define the interfaces .. 2-1
2.2.1.2 Determine client-server access/naming model.. 2-1
2.2.1.3 Determine security requirements.. 2-2
2.2.1.4 Develop server... 2-2
2.2.1.5 Develop client.. 2-3

2.2.2 How DCECOE Simplifies These Concerns.. 2-3

2.3 DCECOE Procedures ... 2-4
2.3.1 Server Procedures.. 2-4
2.3.2 Client Procedures .. 2-4
2.3.3 Features .. 2-4

2.3.3.1 Security ... 2-4
2.3.3.2 ACL Management/Reference Monitor ... 2-5
2.3.3.3 Server Administration ... 2-5
2.3.3.4 Server Startup.. 2-5
2.3.3.5 Server Connection and Query .. 2-5
2.3.3.6 Auditing .. 2-5
2.3.3.7 Serviceability Messages ... 2-5

3. BUILDING A DCE APPLICATION ...3-1

3.1 Defining Interfaces (.idl/.acf files) .. 3-1
3.1.1 Get a UUID... 3-1

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

ii

3.1.2 Write the IDL file.. 3-1
3.1.3 Define Access Control File.. 3-2
3.1.4 Compile the Interface.. 3-2

3.2 Defining Serviceability Messages (.sams files) ... 3-2
3.2.1 Define a Component Name ... 3-2
3.2.2 Complete the SAMS File... 3-3
3.2.3 Compile the SAMS file ... 3-4

3.3 Developing the Server... 3-4
3.3.1 Write the Server Initialization ... 3-4
3.3.2 Write the Manager .. 3-5
3.3.3 Compile the Server.. 3-7

3.4 Writing the Client... 3-7
3.4.1 Develop the Client .. 3-7
3.4.2 Compile the Client .. 3-11

3.5 Installing the Application ... 3-11
3.5.1 PostInstall Scripts ... 3-12
3.5.2 ACL setup Script... 3-18

3.6 Additional Examples... 3-18
3.6.1 Selection of Server .. 3-18
3.6.2 Use of Multiple Servers ... 3-19
3.6.3 Three-tier Applications ... 3-19
3.6.4 Object-based Binding .. 3-19
3.6.5 Application-specific Attributes .. 3-20

3.7 Structure of DCE Namespace... 3-20
3.7.1 Cell Directory Services (CDS) Namespace .. 3-20
3.7.2 Security Registry ... 3-22
3.7.3 Host Table... 3-23

4. DCECOE ATTRIBUTES...4-1

4.1 Use of the DCED... 4-1

4.2 Example Server Configuration Attributes ... 4-1

4.3 DCECOE Attributes... 4-3

4.4 Using attributes... 4-4
4.4.1 SvcTableName .. 4-5
4.4.2 MgmtMapping .. 4-5
4.4.3 MgmtAcl .. 4-5
4.4.4 MgmtAclMgr.. 4-5
4.4.5 AclFile and AclNameFile.. 4-5

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

iii

4.4.6 AclSetup ... 4-6
4.4.7 AclMgrInfo... 4-6
4.4.8 AclMgrDesc.. 4-6
4.4.9 AclMgrType.. 4-7
4.4.10 AuditTrail ... 4-7
4.4.11 AuditFirst.. 4-8
4.4.12 AuditClasses ... 4-9
4.4.13 ServerThreads ... 4-9
4.4.14 DCEop.. 4-9
4.4.15 Service and DebugService ... 4-10
4.4.16 KeytabFile... 4-11
4.4.17 ClientBind .. 4-11

4.5 Other interfaces for accessing attributes ... 4-11

4.6 Client configuration objects.. 4-12

APPENDIX A - DCECOE MANUAL PAGES... A-1

COEDCEcreate_acl(3rpc)... A-5

COEDCEfinalize_client(3rpc) .. A-6

COEDCEfinalize_server(3rpc) ... A-7

COEDCEfree_servers(3rpc) ... A-8

COEDCEgetvector(3rpc) .. A-9

COEDCEinitialize_client(3rpc) .. A-10

COEDCEinitialize_server(3rpc) ... A-12

COEDCEinquire_server(3rpc) ... A-15

COEDCEis_authorized(rpc) ... A-17

COEDCElocate_server(3rpc).. A-19

COEDCEsignal_server(3rpc).. A-21

APPENDIX B - SAMPLE APPLICATION.. B-1

calc.idl.. B-1

calc.acf ... B-1

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

iv

calc.sams .. B-2

CALCclient.c ... B-4

CALCserver.c .. B-7

CALCmanager.c.. B-7

APPENDIX C - ACRONYMS... C-1

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

v

LIST OF FIGURES

FIGURE 1 CALC STRUCTURE... 3-12
FIGURE 2 INSTALL.. 3-13
FIGURE 3 INSTALL.DCECP... 3-15
FIGURE 4 INSTALL1.DCECP... 3-16
FIGURE 5 CALC.APP.. 3-17
FIGURE 6 CALC.SERVER .. 3-18
FIGURE 7 CALC.CLIENT... 3-18
FIGURE 8 SAMPLE APPLICATION CDS NAMESPACE... 3-21
FIGURE 9 SAMPLE APPLICATION SECURITY REGISTRY.. 3-22
FIGURE 10 SAMPLE APPLICATION HOST NAMESPACE .. 3-23

LIST OF TABLES

TABLE 1 HOST SPECIFIC DATABASES... 4-1
TABLE 2 PREDEFINED COEDCE ATTRIBUTES ... 4-4

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and 1-1 December 20, 1996
Engineering Organization

1. INTRODUCTION
The Defense Information Infrastructure (DII) Common Operating Environment (COE)
Supplimental Consolidated DCE 1.1 Application Development Tools Programmers Guide
provides instructions on using a set of application programming interfaces (API’s) developed to
simplify the development of client-server applications that take full advantage of the services of
DCE. These API’s are collectively called the DCECOE library.

1.1 Background
The objective DII environment is a tiered, open, and distributed software architecture built upon a
client/server model, which allows the separation of data, communications, and display software.
To accomplish this, DII has defined a COE that includes support applications, platform services,
and reusable software components. To assist in the development of mission applications, the COE
provides integrated services to support the mission application software requirements and
software development environment.

The DII COE includes distributed computing services to provide specialized support for
applications that may be dispersed among computer systems in the network but must maintain a
cooperative processing environment. The commercial software selected by the DII COE to
provide these services is the Open Software Foundation’s (OSF1) Distributed Computing
Environment.

1.2 Scope
This document is a practical guide to programming applications for the DII COE DCE. It is
intended for application developers who have basic knowledge of the concepts and services of
DCE, but do not have a detailed understanding of the API’s provided by the basic DCE product.
This documentation will augment, not replace, the OSF and TRANSARC documentation. The
following documents from the reference list in Section 1.5 are suggested companion documents to
this guide:

· OSF DCE Application Development Guide - Introduction and Style Guide
· OSF DCE Application Development Guide - Core Components
· Guide to Writing DCE Applications, Second Edition

1.3 Applicability
The information in this document relates to OSF DCE 1.1 and related updates included in DII
COE Version 3.0.

1 The acronym OSF also stands for the DII Operational Support Facility. Unless specifically qualified, the
acronym as used in this guide will refer to the Open Software Foundation.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and November 22, 1996
Engineering Organization

1-2

1.4 Report Organization
This guide contains the following sections:

· Introduction - Provides a background of the DII COE Suppimental Consolidated DCE
1.1 Application Development Tools Programmers Guide, its scope, and report
organization.

· Overview - Provides an introduction to the rationale and basic concepts of the DCE
API’s for COE (DCECOE).

· Application Development - Provides an overview of the steps required to build a DCE
application using the DCECOE library.

· Appendix A - DCECOE man pages.
· Appendix B - Sample Application.

1.5 References

· OSF DCE Application Development Guide - Introduction and Style Guide, Open
Software Foundation.

· OSF DCE Application Development Guide - Core Components, Open Software
Foundation.

· OSF DCE Application Development Reference - Volume 1, Open Software
Foundation.

· Guide to Writing DCE Applications, Second Edition, O’Reilly & Associates, Inc.
· DII COE Integration and Runtime Specification (I&RTS), Version 2.0, October 23,

1995.
· DII COE Integration and Runtime Specification, Appendix X, Distributed Computing

Environment, February 6, 1996.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

2-1

2. OVERVIEW OF THE DCECOE LIBRARY
This section is intended as an overview of the DCECOE components. It serves as a reference for
the function a component performs and why the component is necessary. It is important to
remember that the DII COE uses DCE version 1.1.

2.1 Purpose
The DCECOE library is designed to facilitate the development and deployment of manageable,
robust DCE client-server applications.

2.2 Basic Concepts
In order to make the DCECOE-based applications more manageable, configurable and to
guarantee non-interference, the DCECOE relies heavily on the concept of an application
repository which contains many of the meta operations, configuration options, structure, and
dependencies of these applications. This section describes some of the concerns that a typical
DCE developer will encounter, and then shows how use of the DCECOE library simplifies the
development.

2.2.1 Concerns in Building DCE Applications
Building a robust DCE application usually requires many similar steps and requires the use of
many of the numerous API’s provided in the standard DCE product. The developer will have
many choices to make in the design of their application. Developers will each make their own
choices based on factors such as experience, style, and application requirements. The following
are the basic steps required, and some of the typical concerns.

2.2.1.1 Define the interfaces
The first step in developing a DCE application is to define the client-server interfaces using the
DCE Interface Design Language (IDL). Some of the concerns include:

· How many interfaces are needed?
· What are their parameters?
· Does it require any special IDL support
· What RPC semantics should be used?

 The result may be one or more IDL files

2.2.1.2 Determine client-server access/naming model
The next step is to determine the method for clients to locate and access servers using the
facilities of DCE. Concerns include:

· Which DCE service model will be used?

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

2-2

· Which DCE resource model will be used?
· The number of servers required?
· How will client locate the server?
· Can all servers be registered in CDS?
· How many servers does client need to contact?

· One? Any one? A specific one? Multiple?
· Which kinds of naming elements in CDS are used?

· entry, group, profile
· What names are used to identify servers?

 (reference to DCE reference materials on design decisions)

2.2.1.3 Determine security requirements
If the application has security or privacy requirements, then the security features of DCE should
be utilized. Concerns include:

· How are server principals assigned and used?
· If the server is run by a user.
· If the server is automatically run through a noninteractive login.

· How many servers are available?
· How do servers trust each other?
· How does client know the name of the server?

· Multiple principals
· What security settings does server demand?
· How does the client negotiate appropriate security settings with the server?

2.2.1.4 Develop server
A typical server implements logic to satisfy the interface defined in the first step. However, in
addition, the server must implement a variety of other routines, including the following:

· Server initialization processing
· Registration with runtime
· Registration with endpoint mapper
· Registration in CDS
· Support for serviceability used to manage error messages
· Support for remote serviceability

· Reference monitor to make access control decisions
· Management authorization routines to start/stop the server
· Auditing routines to manage the capture of audit messages.
· ACL manager to maintain access control information.

· Database preparation
· ACL initialization
· ACL name to object resolution

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

2-3

2.2.1.5 Develop client
The client application makes use of the service interfaces offered by the server, but in addition it
must implement additional logic to initialize and manage the DCE interfaces. These include:

· Binding preparation to locate and bind to a server
· Logic to create and maintain authentication information
· Routines to prepare and maintain a serviceability interface for messages.

2.2.2 How DCECOE Simplifies These Concerns
The I&RTS DCE Appendix X defines many of these choices in order to promote uniformity,
consistency and to avoid conflicts that can occur when a large number of applications attempts to
share a set of common resources (CDS, Security, file systems etc.)

The DCECOE attempts to provide additional support for a wide range of client server
development tasks and attempts to provide extensibility using the server configuration record and
through the use of optional callbacks.

The following example is representative of performing server initialization. This short code
fragment handles all of the details of server registration, login, ACL initialization, auditing, etc.

The include file, dcecoepublic.h is located in the /usr/include/dcecoe directory and contains all
of the information necessary to use the DCECOE interfaces.

#include <dcecoe.h>
#define SEGMENT "CALC"
main(int argc, char **argv)
{
 error_status_t st;
 COEDCEinitialize_server(SEGMENT,

 S_LOGIN|S_REFRESH|S_KEYMGMT|S_ACL|S_AUDIT|
 S_CDSEXPORT|S_LISTEN|S_CLEANUP|S_MGMTAUTH,
 NULL, &st);

 exit (st != rpc_s_ok);
}

This initialization sequence performs up to several thousands of lines of complex DCE logic
which your application need not contain. The actual functions performed are selected by using the
'flags' parameter. The manual pages contain the detailed information about each of the options.

You are probably wondering how this application which has a single constant -- the SEGMENT
name -- knows about the dozens of constants and parameters that are required to satisfy the DCE
APIs. This information is recorded in the dced's configuration record under the record name
CALCserver. This information gets installed in the dced when the server application is installed
on a particular machine.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

2-4

2.3 DCECOE Procedures
Functions in the DCECOE RPC library provide a simplified mechanism for developing client-
server applications using the OSF DCE services. All of the procedure calls required to initialize a
DCE client or server are consolidated into a single procedure call. The routines make use of
sensible, but overridable, defaults to simplify the development of applications. The DCECOE
library takes advantage of and provides easy access to many of the features of OSF DCE Version
1.1, as described below.

The DCECOE library consists of the routines listed below and described in separate man pages.2

2.3.1 Server Procedures
COEDCEinitialize_server() - Initializes a DCE server
COEDCEsignal_server() - Signal a server to enter listen loop
COEDCEcreate_acl() - Creates an access control list (ACL)
COEDCEis_auth() - Makes an authorization decision
COEDCEfinalize_server() - Terminate server resources

2.3.2 Client Procedures
COEDCEinitialize_client() - Initializes a DCE client
COEDCElocate_server() - Locates a server
COEDCEgetvector() - Retrieves a binding vector
COEDCEinquire_server() - Gets info about a server
COEDCEstart_server() - Prepare a handle for communications with a server
COEDCEfree_servers() - Frees a server
COEDCEfinalize_client() - Frees allocated resources

2.3.3 Features

2.3.3.1 Security
The security of an RPC connection can be configured to any level from unauthenticated to
authenticated and encrypted. The DCECOE routines automatically perform server login,
authentication, password maintenance, and security context refresh. They guarantee that clients
use appropriate security choices as required by servers. DCE security mechanisms are used to
identify and authenticate servers rather than inquiring of servers themselves for security
identification.

2 The prefix for these routines will be changed to DCECOE in the next version, to be consistent with the overall
library name. The current names will be retained for the next two releases.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

2-5

2.3.3.2 ACL Management/Reference Monitor
The server routines include an access control list (ACL) manager to allow remote management of
ACL’s for the server. An application may define its own functions to be controlled (e.g.
read/write/delete for storage, print/control for a printer, view/update for document, etc.). At
built-in reference monitor makes access decisions based on the contents of the ACL database and
performs access auditing.

2.3.3.3 Server Administration
The DCECOE server library implements a management interface that allows the server to be
remotely managed using the standard dcecp. Server configuration information, including security
parameters, file locations, and application configurables, are maintained as extended attributes
within CDS.

2.3.3.4 Server Startup
The DCECOE client library provides functions to allow a server to be started on demand if one is
not currently running.

2.3.3.5 Server Connection and Query
The client library allows the client to connect to any available server, or to locate all available
servers and retrieve information about the servers in order to make a connection decision.
Decisions can be made based on the availability of the server, the ‘objects’ maintained by the
server, or any other information agreed upon between the client and server and recorded in the
configuration information within CDS.

2.3.3.6 Auditing
The server routines maintain an audit file that can be written by the reference monitor or the
application using standard OSF DCE audit functions.

2.3.3.7 Serviceability Messages
The DCECOE library functions make use of the OSF DCE 1.1 serviceability interfaces to
generate and manage error messages. The server management interface allows messages of
different severity to be turned on or off and routed to different locations (e.g. error log, stderr,
etc.).

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-1

3. BUILDING A DCE APPLICATION
This section describes the steps required to build a DCE application using the DCECOE library.
The discussion assumes that the reader is familiar with the background information from Chapters
1 and 2 of the reference Guide to Writing DCE Applications. The discussion is based on the
sample calculator application supplied with the DCECOE library. This application is intended to
be used as a template for developing DCE applications.

3.1 Defining Interfaces (.idl/.acf files)

3.1.1 Get a UUID
Each DCE interface has a unique identifier (uuid) to ensure compatibility of the client and server.
 DCE will only allow a binding between compatible interfaces. Get a unique identifier for each
interface to be defined, using uuidgen. The uuid information will become part of the IDL file that
defines the interface. An example uuid for the sample calculator application is as follows.

[uuid(0073a028-fbdb-1e53-908e-08002b13ca26), version(1.0)]

3.1.2 Write the IDL file
Define the interfaces in a IDL (.idl) file. Insert the uuid from the previous step into the .idl file.
The interface definition is the same for a DCECOE application as for any other DCE application.
NOTE: If you are using the sample application as a template, you will need to replace the uuid in
the calc.idl file with a new uuid for the new interface.

The following is an extract from an IDL file defining the calculator interface. The full sample is
included in Appendix B. The IDL file defines the calculator operations (e.g. add and subtract) as
well as the parameters for each operation. The IDL file also defines constants that will be used in
the client and server applications, such as return status codes (e.g., calc_s_ok).

interface calculator
{
 const long calc_s_ok = 0;
 const long calc_div_by_zero = 100;
 long add (

[in] long a,
[in] long b,
[out] error_status_t *st

);
 long subtract (

[in] long a,
[in] long b,
[out] error_status_t *st

);

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-2

}

For more information about defining IDL files, please refer to Guide to Writing DCE
Applications Chapter 2 or OSF DCE Application Development Guide - Core Components
Chapters 17 and 18.

3.1.3 Define Access Control File
The access control file (.acf) is usually optional, but is required when using the DCECOE library.
In the sample application, the ACF file specifies that the binding handle is managed by the client
application and explicitly passed as part of the interface. DCE will automatically include the
binding handle in the argument list, even though it is not included in the interface definition in the
IDL file. This option is necessary in order to use security features. The sample ACF file also
informs DCE to report any communications errors in the defined status parameter st. The ACF
file for the sample application is shown below.

/* Sample Application */

[explicit_handle]
interface calculator
{

add([comm_status] st);
subtract([comm_status] st);

}

The OSF DCE Application Development Guide - Core Components Chapter 18 provides
additional information on using ACF files.

3.1.4 Compile the Interface
Compile the .idl and .acf files using the idl compiler. Usually this will be automated by a line in
the application make file. This creates a header file for the interface (e.g., calc.h) as well as client
and server “stub” files (e.g. calc_cstub.c and calc_sstub.c).

idl -cc_cmd "cc -c" -I/usr/include/dce -I/usr/include/dcecoe \
-I. calc.idl

3.2 Defining Serviceability Messages (.sams files)

3.2.1 Define a Component Name
The serviceability messages file defines message text and audit message numbers for use by the
application. All serviceability messages are identified by a six-letter sequence identifying the

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-3

“technology” and “component” that generated the message.3 Determine a three-letter component
name for the application based on the segment prefix (e.g., cal for the sample application). These
three letters will appear on every system-generated message from the application. Insert the
component name in the front of the SAMS file, as shown in the sample below. There are no
differences in defining a SAMS file for a DCECOE application compared to any other DCE
application. NOTE: If using the sample application calc.sams file as a template, there are
numerous places where the component name is used in variable names by convention, and must be
changed for a different application.

Part I
This part defines the lowest-level table, the one that contains
all the
messages (defined in the third part) in a straight array.
component cal
table cal__table
technology dce

3.2.2 Complete the SAMS File
Develop the serviceability message (.sams) file containing the audit events and messages for the
application. The following is an extract from the sample application file calc.sams. The entire file
is included in Appendix B.

Part II
This part defines the sub-component table
serviceability table cal_svc_table handle cal_svc_handle
start
 sub-component cal_s_manager "manager" cal_i_svc_manager
 sub-component cal_s_server "server" cal_i_svc_server
end
#
Part IIa
This part contains event codes for auditing
#
start
code add_event
text "add operation"
action ""
explanation ""
end
Part III
This part defines the serviceability messages.
#

3 Applications are supposed to be identified with the technology dce and an identifying number assigned by the
OSF. Until a block of numbers are assigned for COE applications, a unique component name derived from the
segment prefix should be used.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-4

start
code cal_sad_ending
sub-component cal_s_server
attributes "svc_c_sev_error"
text "server initialize failed"
action ""
explanation ""
end

For more information on defining SAMS files, please refer to the OSF DCE Application
Development Guide - Core Components, Chapter 3, and the sams man page.

3.2.3 Compile the SAMS file
Compile the .sams file using the sams command. This will also usually be part of a make file.
The sams program creates as many as 10 files, depending on the options given. In the case of the
sample application, only the message header (dcecalmsg.h) and message (dcecal.cat) files are
required. The header file is used by any client or server routines that print serviceability messages.
 The message file is used at execution time and must be delivered with the application segment.
The following is an example from the sample application make file.

sams -oh calc.sams

3.3 Developing the Server
Write the server, making use of the DCECOE library routines. Usually the server setup code
should be in a separate file from the “manager” code that implements the application logic of the
server. Additional background on developing servers can be found in Guide to Writing DCE
Applications Chapter 1. The next paragraphs walk through the initialization program and the
manager program for the sample application. The complete example is included in Appendix B.

3.3.1 Write the Server Initialization
This program initializes the server and begins listening for clients. The program starts by
including the DCECOE public header file and the header file for the server interface. For
convenience it also defines the segment prefix for use in the DCECOE API calls.

/* Sample server initialization code */

#include <dcecoe/dcecoe.h> /* for use with COEDCE APIs */
#include "calc.h"

#define SEGMENTSERVICE "CALC"

For this simple program, the initialization main program consists of a single DCECOE library call,
as shown below. The COEDCEinitialize_server() routine reads the server configuration

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-5

attributes, and performs initialization based on these attributes and the values of flags provided.
In this case, the routine performs a DCE login for the server principal, sets up to perform key
management, auditing, and server management, and begins listening for client calls. Control
remains within the API until the server is signaled to stop.

main(int argc, char **argv)
{
 error_status_t st;

 COEDCEinitialize_server(SEGMENTSERVICE,
 S_LOGIN|S_REFRESH|S_KEYMGMT|S_ACL|S_AUDIT|
 S_CDSEXPORT|S_LISTEN|S_CLEANUP|S_MGMTAUTH,
 NULL, &st);

 exit (st != rpc_s_ok);
}

For more complex servers, additional initialization logic would be required prior to the DCECOE
call to handle initial parameters, process configuration files, and open files or initialize databases.

3.3.2 Write the Manager

The application-specific logic to implement the interface’s operations is included in the “manager”
program. The manager also includes the DCECOE public include files and the header file for the
interface. In addition, it must include the messages header file (e.g. dcecalmsg.h) generated by
sams in order to use the definitions of serviceability messages and audit events.

#include <dcecoe/dcecoe.h>
#include "calc.h" /* build by IDL */
#include "dcecalmsg.h" /* built by SAMS - audit codes */

The remaining portion of the manager consists of the definition of the operations defined for the
server interface. The operations are defined much as they would be if they were local subroutines
rather than remote procedures. Note that the binding handle bh is explicitly included at the front
of the argument list, even though it is not present in the IDL definition of the interface.

idl_long_int
add (

rpc_binding_handle_t bh,
idl_long_int a,
idl_long_int b,
unsigned32 *st)

{
 /* implementation of add operation omitted */
}

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-6

idl_long_int
subtract (

rpc_binding_handle_t bh,
idl_long_int a,
idl_long_int b,
unsigned32 *st)

{
 /* implementation of subtract operation omitted */

}

The actual implementation of the add operation is shown below. The routine initializes two
structures used to identify the client who originated the call to the server, and to identify the
required permissions4. It then calls COEDCEis_authorized() to determine if the client has the
required permission. Based on the result of that call, the routine returns the result (e.g. a+b), or
returns an error.

COEDCEclientid_t client;
 COEDCEobject_t object;

 /* this is how we identify the client */
 client.identity = ID_HANDLE;
 client.id.handle = bh;

 /* this represents the object to look up and the required
 permissions */
 memset(&object, 0, sizeof(object));
 object.name = "calculator";
 object.permname = "a"; /* add */

 if (COEDCEis_authorized(&client, add_event, &object, NULL, st)
 == aud_c_esl_cond_success)

 return(a+b);
 /* st has status code */
 return -1;

The second argument to the COEDCEis_authorized() call identifies an audit event to be
initialized. Although not shown in this sample, an audit record is initialized by the library and may
be written by the application if desired. Further information on auditing can be found in OSF
DCE Application Development Guide - Core Components, Chapter 33.

4 The API is being revised to hide these structures inside the COEDCE library and simplify this call. The revised
API will be available in the next version.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-7

3.3.3 Compile the Server
Compile the server, to include the server stub created from the IDL file. Link with the libdcecoe
library. The following illustrates the compile and load statements extracted from the sample
application make file.

cc -c -g -DSOLARIS -D__EXTENSIONS__ -I. -I../include \
-o CALCserver.o CALCserver.c

cc calc_sstub.o CALCserver.o CALCmanager.o /usr/lib/libdcecoe.a \
-L/usr/lib/dce -ldce -lnsl -lthread -lm -o CALCserver

3.4 Writing the Client

3.4.1 Develop the Client
Write the client, making use of the DCECOE library routines. The following paragraphs walk
through the sample application, which is included in Appendix B.

The client must also include the DCECOE public header file as well as the interface header. For
convenience it also defines the segment prefix.

#include <dcecoe/dcecoe.h>
#include "calc.h"

#define SEGMENTSERVICE "CALC"

The client main program defines local variables required for the DCECOE library and the user
interface logic that runs the calculator application.

main(int argc, char **argv)
{
 unsigned32 err; /* COE error */
 error_status_t dceerr; /* DCE error */
 rpc_binding_handle_t handle; /* binding handle */

 /* interface client logic */
 idl_long_int a, b, c;
 char operand;
 error_status_t st;
 int rc;

The client then initializes the DCE environment using COEDCEinitialize_client(). This logic
primarily sets up internal structures for the client. The CHECK routine is implemented within the
client to check error codes and print an error message if required. See Appendix B.

 err = COEDCEinitialize_client(SEGMENTSERVICE, 0, &dceerr);
 if (CHECK(err, "initialize_client", dceerr))

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-8

exit(1);

The sample application contains two different routines to bind to a server, one called simple() and
one called complex(). The simple one requests a single server and attempts to bind to it, while
the complex routine looks at all available servers and selects one based on some criteria. Each is
described below. The routine to be used is selected by changing the if statement shown below.

#if 1
 handle = simple();
#else
 handle = complex();
#endif

The simple case is shown below. In makes a single call to COEDCElocate_server() requesting
a single binding. The library routine will locate a server using the pointer into CDS provided in
the client’s configuration attributes. See Chapter 4 for more information. The
COEDCEgetvector() routine is used to return the binding vector containing the results of the
COEDCElocate_server() call5.

rpc_binding_handle_t
simple(void)
{
 unsigned32 count = 1;
 unsigned32 err;
 error_status_t dceerr;

 err = COEDCElocate_server(0, 0, 0, &count, &dceerr);
 if (CHECK(err, "locate_server", dceerr) || count < 1)

return NULL;
 else

return (COEDCEgetvector())->binding_h[0];
}

The complex binding routine make more complete use of the DCECOE library capabilities. It
also begins with the definition of variables required by the library calls.

rpc_binding_handle_t
complex(void)
{
 unsigned32 count = 100;
 unsigned32 one = 1;
 rpc_binding_handle_t handle = NULL;
 server_t *servers;

5 The current implementation of COEDCElocate_server() is not thread-safe because the binding vector is
maintained in the DCECOE library. The next implementation of the DCECOE library will correct this problem.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-9

 int i;
 unsigned32 err;
 error_status_t dceerr;

It also uses COEDCElocate_server() to find servers, using the CDS pointer configured for the
client. In this case it requests that up to 100 server bindings be returned.

 err = COEDCElocate_server(C_NOOBJ, 0, 0, &count, &dceerr);
 if (CHECK(err, "locate_server", dceerr) || count < 1)

return NULL;

If there are errors or no servers can be found, the routine returns a NULL handle. If successful,
the routine looks at each server in turn, using COEDCEinquire_servers() with the C_EXEC
option to determine if the server is running. If the server is not running, the loop continues to
look at the next server. In this example, the routine selects the first running server, however a
more complex client could obtain additional information about the server to use in its selection.
The C_CONF option could also be used to obtain information about all configured servers,
whether running or not. Once a server is selected, the list of applicable servers returned from
COEDCEinquire_servers() is released using COEDCEfree_servers().

 for (i=0; i<count; i++) {
 err = COEDCEinquire_server(C_EXEC, 0, &one, &servers,

(COEDCEgetvector())->binding_h[i], &dceerr);
 if (CHECK(err, "inquire_server", dceerr) || count < 1)

 continue;

/* pick one based on some criteria */
/* (in this example, just select the first one running) */

handle = (COEDCEgetvector())->binding_h[i];
err = COEDCEfree_servers(servers, one, &dceerr);
CHECK(err, "free_servers", dceerr);

/* we found one we liked */
if (handle)

 break;
 }

 return handle;
}

Whether the simple or complex routine is used, the result will be a binding handle for a server, or
NULL is no server is found. In the latter case the program exits.

 if (handle == NULL) {
printf("server not installed correctly\n");

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-10

 exit(1);
 }

If a handle is returned, the client binds to the server using COEDCEstart_server(). In this case,
the flags indicate that the DCECOE library should attempt to ping the server to ensure that it is
answering calls, it should attempt to start the server if it is not running, and it should establish a
secure connection using the parameters established in the server’s configuration record. If it fails
to connect, the client exits. A more sophisticated client could include more graceful error
handling, such as seeking an alternate server.

 err = COEDCEstart_server(C_PING|C_START|C_SECURE, 0,
handle, &dceerr);

 if (CHECK(err, "start_server", dceerr))
 exit(1);

Now that the client is bound to a server, the client enters a loop where it interacts with the user
asking for an operation and two values, and calling the appropriate server operation. Notice that
there are no DCECOE routines required during this part of the program, and the calls to the
calculator operations (e.g. add and subtract) are the same as if the operations were local
procedure calls, with the exception of the explicit binding handle. The client remains in this loop
until the ‘q’ operation is entered.

 /* user interaction */
 while (true) {

fprintf(stdout, "Operation: (op val1 val2) ");
fflush(stdout); fflush(stdin);
rc = fscanf(stdin, "%c %ld %ld", &operand, &a, &b);
if (operand == 'q') break;
switch (operand) {
case '+':

 c = add(handle,a,b,&st);
 break;

case '-':
 c = subtract(handle,a,b,&st);
 break;

default:
 fprintf(stderr, "Invalid operand\n"); continue;
 }
 if (st == calc_s_ok)

 fprintf(stdout, "%ld %c %ld = %ld\n", a, operand, b, c);
 else
 CHECK_STATUS(st, "operation failed", CONTINUE);
 (void *)fgetc(stdin);

 }

The final task for the client is to terminate the binding and free up internal structures.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-11

 COEDCEfinalize_client(0, &st);
}

3.4.2 Compile the Client
Client compilation is very similar to server compilation. Compile the client, to include the client
stub. Link with the libdcecoe library. The following is again an extract from the makefile.

cc -c -g -DSOLARIS -D__EXTENSIONS__ -I. -I../include \
-o CALCclient.o CALCclient.c

cc calc_cstub.o CALCclient.o /usr/lib/libdcecoe.a -L/usr/lib/dce \
-ldce -lnsl -lthread -lm -o CALCclient

3.5 Installing the Application
The initialization scripts provided with the distribution are in preliminary form. They define three
levels of installation and removal; application, server, and client. Application level is performed
once per cell after the application's SEGMENT installation occurs. The server and client portions
are used on machines after SEGMENT installation occurs.

Creating an application using the sample requires hand modification of the Postinstall script.

The long term goal is to automatically generate the server installation based on a set of DCE
descriptors.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-12

3.5.1 PostInstall Scripts

CALC.app CALCserver CALCclient

INSTALL.DCECP

cleanup setupxattr install

setupclientsetupserver
This diagram provides a structure of the current

installation process of a DCE server. The Processes
are internal calls made to programs inside the . The

Predefined processes are external calls.

MainMenu StartInstall

PostInstall

Install

Figure 1 CALC Structure

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-13

Call program
INSTALL.DCECP

set SECORG = user
input or none

set SECGROUP = to
$SEGMENTgroup

$TYPE

Set Unix Account
name to ID Set ID = any

server client

APP

set SECGROUP to
$SEGMENTgroup

MainMenu
1. app

2. server
3. client

set SECORG = user
input or none

SECGROUP=
${SEGMENT}-server

default=none or user
inputs org name

A

Figure 2 Install

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-14

Build UUID Llist
INSTALL.DCECP
CALC Segment

22 November 1996

Initialize Variables
ID=root
UID=0
GID=0

Build Unix Directories
/h/$SEGMENT/data
/h/$SEGMENT/data/keytab
/h/$SEGMENT/bin

Type of Install

APP

Call CALC.appCall CALC.server

server

Call CALC.client

client

setupxattr
create xattrschema

from $uuidlist

server

app

client

/.:/hosts/<hostname>/
config/xattrschema

logout of cell_admin

Set variable cell to
cellname

Verify Unix root
account exists

Set variables

Read /etc/passwd file
for $ID

DIRECTORY=/h/$SEGMENT
PRINCIPAL==$_h/
${SEGMENT}server

login as cell_admin

cleanup previous
installation

Z

B

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-15

Figure 3 INSTALL.DCECP

Install

server or client?

setupclient

server

setupserver

setupserver

Create keytab file

Change permission
on Unix files

Change ownership on
Unix files

Create server entry

Modify server entry

/h/$SEGMENT/data/
keytab/

$SEGMENT.tab

chmod 750 keytab
chmod 750 keytab/

$SEGMENT.tab

chown $UID data
chgrp $GID data

server create
${SEGMENT}server

Add xattrschema to
${SEGMENT}server

setupclient

Create client entry

Modify client entry

server create
${SEGMENT/client

server modify
${SEGMENT}client

A

Install

server or client?

setupclient

server

setupserver

setupserver

Create keytab file

Change permission
on Unix files

Change ownership on
Unix files

Create server entry

Modify server entry

/h/$SEGMENT/data/
keytab/

$SEGMENT.tab

chmod 750 keytab
chmod 750 keytab/

$SEGMENT.tab

chown $UID data
chgrp $GID data

server create
${SEGMENT}server

Add xattrschema to
${SEGMENT}server

setupclient

Create client entry

Modify client entry

server create
${SEGMENT/client

server modify
${SEGMENT}client

A

Install

server or client?

setupclient

server

setupserver

setupserver

Create keytab file

Change permission
on Unix files

Change ownership on
Unix files

Create server entry

Modify server entry

/h/$SEGMENT/data/
keytab/

$SEGMENT.tab

chmod 750 keytab
chmod 750 keytab/

$SEGMENT.tab

chown $UID data
chgrp $GID data

server create
${SEGMENT}server

Add xattrschema to
${SEGMENT}server

setupclient

Create client entry

Modify client entry

server create
${SEGMENT/client

server modify
${SEGMENT}client

A

Install

server or client?

setupclient

server

setupserver

setupserver

Create keytab file

Change permission
on Unix files

Change ownership on
Unix files

Create server entry

Modify server entry

/h/$SEGMENT/data/
keytab/

$SEGMENT.tab

chmod 750 keytab
chmod 750 keytab/

$SEGMENT.tab

chown $UID data
chgrp $GID data

server create
${SEGMENT}server

Add xattrschema to
${SEGMENT}server

setupclient

Create client entry

Modify client entry

server create
${SEGMENT/client

server modify
${SEGMENT}client

A

Install

server or client?

setupclient

server

setupserver

setupserver

Create keytab file

Change permission
on Unix files

Change ownership on
Unix files

Create server entry

Modify server entry

/h/$SEGMENT/data/
keytab/

$SEGMENT.tab

chmod 750 keytab
chmod 750 keytab/

$SEGMENT.tab

chown $UID data
chgrp $GID data

server create
${SEGMENT}server

Add xattrschema to
${SEGMENT}server

setupclient

Create client entry

Modify client entry

server create
${SEGMENT/client

server modify
${SEGMENT}client

A

Install

server or client?

setupclient

server

setupserver

setupserver

Create keytab file

Change permission
on Unix files

Change ownership on
Unix files

Create server entry

Modify server entry

/h/$SEGMENT/data/
keytab/

$SEGMENT.tab

chmod 750 keytab
chmod 750 keytab/

$SEGMENT.tab

chown $UID data
chgrp $GID data

server create
${SEGMENT}server

Add xattrschema to
${SEGMENT}server

setupclient

Create client entry

Modify client entry

server create
${SEGMENT/client

server modify
${SEGMENT}client

A

B

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-16

Figure 4 INSTALL1.DCECP

Create Group
$SEGMENT-servers
$SEGMENT-admin
$SEGMENT-users

Create CDS Directory
/.:/h

/.:/h/$SEGMENT
/.:/h/$SEGMENT/hosts

Set ACL for /.:/h/
$PREFIX

CALC CALC-servers rwitda
-io CALC CALC-servers rwdt
-ic group CALC-servers rwitda

Set ACL for /.:/h/
$PREFIX/hosts

group CALC-admin rwitda
-io group CALC-admin rwdt
-ic group CALC-admin rwtda

Set ACL for /.:/h/
$PREFIX/groups

group CALC-admin rwt
-io group CALC-admin rwt

Create rpcgroup /.:/h/$PREFIX/groups/
servergroups

Z

SECGOUP var
exists?

set groupname to
$SECGROUP

set groupname to
"none"

input groupname

NOYES

SECORG var
exists?

Request organization
name

input organization
name

Set orgname to
$SECORG orgname is "none"

NOYES

Create org org create $orgname

Request groupname

CALC.app

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-17

Figure 5 CALC.app

Modify the server entry

acl modify $_c/h/$SEGMENT/$_h -add
"user $_h/${SEGMENT}server rwitda"

acl modify -io /$_c/h/$SEGMENT/$_h -add
"user $_h/${SEGMENT}server rwdt"

Z

set SECORG = user
input or none

set SECORG = user
input or none

set SECORG = user
input or none

set SECORG = user
input or none

set SECORG = user
input or none

set SECORG = user
input or none

/.:/h/$SEGMENT/hosts
/.:/h/$SEGMENT/<hostname>

/.:/sec/principle/hosts/<hostname>/
${SEGMENT}server

/.:/sec/principle/hosts/<hostname>/
${SEGMENT}server

group add $groupname -member /
hosts/borg/${SEGMENT}server

organization add $orgname -member
$_h/${SEGMENT}server

account create $_h/${SEGMENT}server -
password abcde123 -server yes -group

$groupname -org $orgname

CALC.server

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-18

Figure 6 CALC.server

CALC.client
This script is currently

not used.

Z

Figure 7 CALC.client

3.5.2 ACL setup Script
TBD

3.6 Additional Examples
The following paragraphs provide additional examples of the use of the DCECOE library under
different circumstances.

NOTE: These examples are still under development.

3.6.1 Selection of Server
The complex method of selecting a server previously presented did not exercise the full potential
of DCE. The client may use any information available, including that provided by standard DCE
calls, in order to select a server. For example, the client could query the values of server
attributes in order to determine server capabilities. The client could PING the server and measure
the response time as a first-approximation of the “distance” to the server.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-19

The following code fragment shows how the client could determine the hostname of the server if
that is needed in selecting a server.

 rpc_binding_to_string_binding(handle, &sbinding, &dceerr);
 /* get the IP address "xx.xx.xx.xx" as a string */
 rpc_string_binding_parse(sbinding, NULL, NULL, &ipaddr,
 NULL, NULL, &dceerr);
 rpc_string_free(&sbinding, &dceerr);
 /* convert to binary representation */
 addr = inet_addr(ipaddr);
 rpc_string_free(&ipaddr, &dceerr);
 /* retrieve our hostname */
 hp = gethostbyaddr((char *)&addr, sizeof(addr), AF_INET);

3.6.2 Use of Multiple Servers
The example demonstrates a single client and server as part of the same segment. The DCECOE
library makes no assumption about the number of servers used by a client, or the names of the
segments.

To use multiple servers, the client srvrconf entry must be configured with multiple services
attributes, one for each service to be used. Each entry must identify the interface to the service,
as shown in the example in Section 2.4.6. The second argument of the COEDCElocate_server()
and COEDCEinquire_server() routines is an index of the service in the configuration record.

3.6.3 Three-tier Applications
Applications may be both a client and a server in a three-tier arrangement. The DCECOE library
makes no restriction in this regard. NOTE: Since the DCECOE client libraries are not currently
thread-safe, the application must take care to serialize the calls to the DCECOE library routines
between COEDCElocate_server() and COEDCEgetvector().

NOTE: A future version of this guide will provide an example of a three-tier application using
multiple servers.

3.6.4 Object-based Binding
The standard DCE has the ability for servers to associate themselves with “objects” (identified by
uuid’s), and for clients to request a binding to any server providing a specified object. The objects
supported by a server are identified within its rpcentry within CDS. This facility is designed to
allow the location of coarse-grained objects (e.g. specific branches of a bank, or classes of users).
 It is not designed for fine-grained objects (e.g. an individual account in a bank).

The DCECOE library allows the use of this capability. The server is responsible for registering
supported objects using standard DCE calls. The client must have the uuid’s of desired objects

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-20

pre-configured within its services attribute for the appropriate interface. The third argument to
COEDCElocate_server() is an index of an object to locate.

NOTE: A later version of this guide will present an example using this capability.

3.6.5 Application-specific Attributes
The idea of extended attributes in the client or server configuration entries is a powerful capability
that can also be used directly by the application. Applications may define additional attributes as
part of the client or server installation. Values may be assigned to the attributes during
initialization, during execution, or by an administrator at any time.

The DCECOE library does not currently provide any convenient facility for obtaining attributes6,
however the application can obtain them using standard DCE API’s.

3.7 Structure of DCE Namespace
This section illustrates the use of the DCE namespace by an application using the DCECOE
library.

3.7.1 Cell Directory Services (CDS) Namespace
The illustration below shows the structure of CDS after the installation of the sample CALC
application segment on host1.

6 The next version of the DCECOE library will contain functions to allow an application to easily obtain extended
attributes about the client or server.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-21

h

servergrouphost2

members:
/.:/h/CALC/hosts/host1/server

interfaces:
calculator
rdaclif
servicability

server

rpcentry

rpcgroup

/.:/

groups

group CALC-servers rwt
-io group CALC-servers rwt

host1
user host/host1/CALCserver rwitda

-io user host/host1/CALCserver
rwdt

The hosts directory is used
to contain the rpcentries for
each server.

Just as in COE file space, there is a CDS
directory under /.:/h for each segment.
ACL permissions allow server principals to
create and modify entries.

CALC

group CALC-servers rwitda
-io group CALC-servers rwdt
-ic group CALC-servers rwitda

hosts

Each server rpcentry identifies
interface(s) for the server
application logic as well as ACL
management (rdaclif) and
servicability interfaces.

The groups directory is used to contain the
rpcgroup entry that is used to select a
server at random. Each server rpcentry is
registered in the group.
NOTE: An RPC group is not the same as a
security group.

Figure 8 Sample Application CDS Namespace

This is a suggested CDS organization in accordance with the recommendations in the I&RTS
Appendix X. This structure is not suitable for all purposes. For example, if there is a server
installed on every host, this structure could create a large number of host directory entries. In
some cases it is more efficient to group servers by function rather than host name. This structure
is used by the sample application and its installation scripts. However it is not enforced by the
DCECOE library. The only requirement is that the client srvrconf entryname attribute point to an
rpcgroup or rpcprofile in CDS as a starting point for the search for a suitable server. Chapter 4
contains additional information on the use of attributes. The use of /.:/h/SEGMENTNAME to
organize CDS is strongly encouraged.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-22

3.7.2 Security Registry
This section illustrates the DCE principals and groups used in the sample CALC application.

host1 host2

CALCserver

CALC-servers

members:
host1/
CALCserver

host

principal group

CALC-users

/.:/ /.:/

Each instance of a server runs
under its own DCE principal.
Each has the same name, but is
in a separate directory
(e.g. /.:/hosts/host1/CALCserver)

The CALC-servers
group is used to
control access to CDS
entries for servers.
Each server principal
is a member.

This group is used to
control access to the server
interfaces. Each user that
will run the client should be
a member of the group.
Additional groups should be
created to assign different
access rights to portions of
the interface.

CALC-admin

The CALC-admin group is
used to control
administratiive access to
application information.
Members of the group
should be able to change
acl's, add members to
groups, start/stop servers,
install/deinstall clients and
servers.

Figure 9 Sample Application Security Registry

By convention there is a separate server principal for each server instance so that audit records
precisely identify the originator of all actions. The installation scripts for the sample calculator
application follow this convention. However, this is not required by the DCECOE library. The
only requirement is that the principals attribute in the server configuration record contain a valid
principal to use in running the server. Chapter 4 contains additional information about the use of
attributes.

Also by convention, the installation scripts for the calculator application create three groups. The
CALC-users group contains users who are allowed to run clients that access the server. The
CALC-admin group contains users who are allowed to administer the application, including
modifying ACLs for the server, assigning users to CALC groups, or starting/stopping CALC
servers. The CALC-servers group contains all the server principals.

Additional groups may be needed for specific applications. For example, a CALC-adders group
could be created, along with suitable ACLs within CDS, containing users who are allowed to
perform the add operation but not the subtract operation.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

3-23

3.7.3 Host Table
This section illustrates the use of srvconf and xattrschema.

hosts

host1

config

xattrschema

COE

CALCserver (various
attributes)

host2

/.:/

Each installed server is
registered in the server
configuration record for its
host.

Extended attributes used by
the DCECOE routines are
registered in the attribute
schema on each host.

srvrexec

group CALC-admin ???
group CALC-admin ??? -io

group CALC-admin ???
group CALC-servers ??? -io

CALCserver

group CALC-admin ??? group CALC-admin ???

srvrconf

config

CALCclient

group CALC-admin ???
group CALC-admin ??? -io

srvrconf

Figure 10 Sample Application Host Namespace

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

4-1

4. DCECOE Attributes

4.1 Use of the DCED
The dced runs on every DCE machine and provides a set of host-specific services for managing
DCE applications on those systems. In particular, the DCE supports a set of five databases which
are all ACL-secured and are appropriately junctions into the DCE namespace. The DCECOE
makes extensive use of all of these services.

srvrconf - server
configuration

Maintains a set of extensible records which
describe a server
Used to start instances of servers
Servers use these records as initialization and
configuration parameters

srvrexec - server
execution

Maintains a record of a running server
Used to stop instances of servers

hostdata - host file
services

Provides remote access to local system files
Used for performing remote configuration and
reporting.
Currently only used to provide remote access to
local audit files

keytab - key table services Provides remote access to server key tab files
Used during installation, password maintenance,
and backup

xattrschema - extended
attribute schema definition

Used as schema database to describe “extended
attributes” in the srvrconf database

Table 1 Host Specific Databases

4.2 Example Server Configuration Attributes
The following is an example of the srvrconf information for the sample application, as printed
using the command dcecp -c server show CALCserver. The extended attributes used
by the DCECOE library are identified with a COE/ prefix. The remaining attributes are standard
server attributes used by dced. For further information see the xattrschema(8rpc) manual page.

{uuid 4222ef4c-365c-11d0-8016-ccfc0d7baa77}
{program CALCserver}
{arguments {}}
{prerequisites {}}
{keytabs 418bd36e-365c-11d0-8016-ccfc0d7baa77}
{entryname {}}
{services
 {{ifname rdaclif}

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

4-2

 {annotation {Standard ACL interface}}
 {interface {47b33331-8000-0000-0d00-01dc6c000000 1.0}}
 {bindings {}}
 {objects 01eb03d6-e2ee-11cf-91f9-ce9cdd02aa77}
 {flags {}}
 {entryname /.../gccs.smil.mil/h/CALC/hosts/borg/server}}
 {{ifname calculator}
 {annotation {Basic calculator application}}
 {interface {0073a028-fbdb-1e53-908e-08002b13ca26 1.0}}
 {bindings {}}
 {objects {}}
 {flags {}}
 {entryname /.../gccs.smil.mil/h/CALC/hosts/borg/server}}
 {{ifname serviceability}
 {annotation {DCE Serviceability}}
{interface {000cf72e-0688-1acb-97ad-08002b12b8f8 1.0}}
 {bindings {}}
 {objects 01eb03d6-e2ee-11cf-91f9-ce9cdd02aa77}
 {flags {}}
 {entryname /.../gccs.smil.mil/h/CALC/hosts/borg/server}}}
{principals /.../gccs.smil.mil/hosts/borg/CALCserver}
{starton {}}
{uid 500}
{gid 1}
{dir /h/CALC/bin}
{COE/DebugService coe:*.9:TEXTFILE:/h/CALC/data/server.out}
{COE/ServerThreads 5}
{COE/AclMgrType aclobject,flat}
{COE/AclMgrUuid 6ba40bf6-e2ee-11cf-8d13-ce9cdd02aa77}
{COE/AclMgrInfo Calculator {Sample Calculator Refmon}}
{COE/AclMgrDesc c control 8}
{COE/AclMgrDesc t test 64}
{COE/AclMgrDesc a add 128}
{COE/AclMgrDesc s subtract 256}
{COE/AclMgrDefault group subsys/dce/dced-admin ct}
{COE/AclMgrDefault group CALC-admin ct}
{COE/AclMgrDefault user hosts/borg/CALCserver asct}
{COE/AuditFirst 281587713}
{COE/AuditEvents 2}
{COE/AuditMsgs cal}
{COE/MgmtMapping tttta}
{COE/Service WARNING:TEXTFILE:/h/CALC/data/warning.log}
{COE/DcecpOp
 {rpcgroup add /.../gccs.smil.mil/h/CALC/groups/servergroup
 -member /.../gccs.smil.mil/h/CALC/hosts/borg/server}}
{COE/KeytabFile /h/CALC/data/keytab/CALC.tab}
{COE/AuditTrail /h/CALC/data/audit.aud}
{COE/AclSetup /h/CALC/bin/CALCaclsetup}
{COE/AclFile /h/CALC/data/CALC}
{COE/AclNameFile /h/CALC/data/CALCname}

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

4-3

{COE/ClientBind {{dce hosts/borg/CALCserver default default dce}
 /.../gccs.smil.mil/h/CALC/hosts/borg/server}}

The information in this record can be divided into two categories: DCE defined attributes (such as
program, directory, uid, services) and DCECOE defined extended attributes. The DCECOE
attributes are all catalogued in the extended attribute database of each dced.

The trick of using the DCECOE library is to correctly configure these records. All detailed
activity is performed following the settings in the repository.

A note about repository attributes. Standard DCE attributes cannot be changed once created. In
order to change a DCE attribute, the record must be deleted and recreated. However DCECOE
attributes can be changed at any time, and will normally take effect the next time the server is
initialized. All changes to configuration records are controlled by ACLs in the dced. The dced
repository can be edited from anywhere (thanks to CDS and RPC) facilitating remote
management, troubleshooting, verification and configuration management. Of the server
initialization flags, certain flags require the presence of attributes in the configuration record. The
manual pages describe which attributes are required for which flags.

4.3 DCECOE Attributes
DCE extended attributes in the extended attribute registry do not define data; they only describe
the data that can be instantiated (i.e. placed on a srvrconf record). The data types supported are:
printstring, stringarray, int, bytes, uuid, and binding. Each attribute can be further classified as
being single value or multi-value. This controls the number of times that the template can be
instantiated on a single object. The following table describes the predefined COEDCE attributes.
The application writer is encouraged to use attributes and interfaces exist to query/modify these
values administratively and programatically. The following table lists the COEDCE attributes,
which are described in following paragraphs.

Name Multi-
value

Type Format Description

SvcTableName yes printstring 3 chars Serviceability table names

MgmtMapping no printstring 5 chars Management function mapping to
ACL

MgmtAcl no uuid uuid UUID of management ACL

MgmtAclMgr no uuid uuid Manager type uuid of management
ACL

AclFile no printstring path/file name File to save ACL database

AclNameFile no printstring path/file name File to save ACL name translation

AclSetup no printstring path/file name ACL initialization script file

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

4-4

Name Multi-
value

Type Format Description

AclMgrUuid no uuid uuid ACL manager type uuid

AclMgrInfo no stringarray 2 elements:
name, help

Information identifying the ACL
manager (name and annotation)

AclMgrDesc yes stringarray 3 elements:
name,
description,
decimal value

Permissions (character name, title,
and decimal value)

AclMgrDefault yes stringarray 3 elements:
type, key,
permissions

Default ACLs for server objects
(‘group’ or ‘user’, identity of group
or user, permissions)

AclMgrType no printstring Comma
separated:
aclobject,
defcontainer.
defobject name,
uuid

ACL Database characteristics

AuditTrail no printstring path/file name
or ‘central’

File name or ‘central’

AuditFirst no integer decimal value First decimal event number

AuditEvents no integer decimal Number of events

AuditMsgs yes printstring 3 char. Message component for events

AuditClasses yes printstring characters Defined classes, filenames

ServerThreads no integer decimal Max. number of server threads

DcecpOp yes stringarray dcecp command dcecp commands - i.e. for CDS,
profiles

Service yes printstring type:destination:
name

Serviceability setting

DebugService yes printstring component:
level.level:
destination:nam
e

Debug Serviceability setting

KeytabFile no printstring path/file name Filename of keytab file

ClientBind no binding See binding in
xattrschema
man page

Client binding requirements - used
by server

Table 2 Predefined COEDCE Attributes

4.4 Using attributes
The following paragraphs describe the extended attributes used by the DCECOE library routines.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

4-5

4.4.1 SvcTableName

This attribute is used to list the serviceability component names used by this application. The
DCECOE library uses the coe component, but your application may use others. This attribute is
intended to be used during verification to detect the appropriate message catalogs are installed
and to ensure that conflicting components are not installed. A component name must consist of 3
lower-case characters.

4.4.2 MgmtMapping
This set of attributes is used to control and configure the management functions that all DCE
applications support. Management functions allow a client to request interface information, server
principal name, or statistics from the server, to ping the server, or to stop the server. For a
further discussion, see the rpc_mgmt_set_authorization_fn(3) man page. There are five
management operations and the Mgmtmapping attribute defines the relationship between
permissions understood by the ACL manager/Reference monitor permissions. The attribute
defines the permissions that must be present to allow the client to perform the management
function. If this attribute is missing, the DCECOE library assumes 'ttttc' representing the standard
'test' and 'control' permissions. The ACL to be checked is attached to the srvrexec object for the
server.

4.4.3 MgmtAcl
This attribute defines the UUID of the ACL object which will be used as the permission settings
associated with management operations. If this parameter is missing, the DCECOE creates a
default ACL object named mgmt under the server’s rpcentry (e.g.
/.:/h/CALC/hosts/borg/server/mgmt.

4.4.4 MgmtAclMgr
This is the UUID of the ACL manager which imposes semantics over the management ACL. (i.e.
the routine that provides a reference monitor to test permissions to the management functions. If
not supplied, DCECOE uses the ACL manager UUID associated with the standard ACL manager
supplied with DCECOE.

Note: none of the Mgmt attributes are used, if the caller supplies the 'mgmt_function' callback
during COEDCEinitialize_server().

4.4.5 AclFile and AclNameFile
The AclFile and AclNameFile attributes define the names of the files used to house the default
ACL database and its ancillary name-to-ACL database. If their values do not specify absolute

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

4-6

pathnames, the files will be stored under /h/SEGMENT/data. A ".db" extension is added to the
names provided. These attributes are mandatory when using the S_ACL flag.

4.4.6 AclSetup
The AclSetup parameter defines the name of an executable file (usually a dcecp script) which will
be run to initialize the ACL database. This script is run as a side effect of server initialization
whenever the ACL database is not present. It is a natural extension to server installation and
configuration, but is delayed until the first time the server starts because the server must be
running in order to perform ACL updates. When the DCECOE recognizes that the ACL
databases are empty, it runs this program, which by default is the /h/SEGMENT/bin/aclsetup
script. This script performs a configurable set of acl show and acl modify dcecp commands
which can be used to modify initial ACLs to any configuration without hard-coding this in the
application.

Two procedures are provided as part of the default acl manager to simplify ACL setup. The
command newacl is used to create new ACLs and setacl is used to modify the ACL. Here is an
extract from the default aclsetup program.

#/usr/bin/dcecp
/* support routines skipped */
getbind [lindex $argv 0]

newacl calculator
setacl calculator add {group acct-admin asc}

When newacl is used, DCECOE uses the values of the AclMgrDefault attribute to give the ACL
an initial set of values. This attribute is multi-valued and can contain any combination of 'group' or
'user' ACL entries.

Every ACL manager defines a UUID which represents a set of permissions supported by the ACL
manager. The AclMgrUUID attribute allows the user to define this UUID. This attribute must be
present in order to use the S_ACL attribute. The value may be assigned using uuid_create(3) or
more often by uuidgen(1).

4.4.7 AclMgrInfo
The AclMgrInfo attribute represents the string information including the ACL Managers name
and description. This attribute is mandatory when using the S_ACL flag.

4.4.8 AclMgrDesc
The AclMgrDesc attribute is a multi-valued string array, with each array entry consisting of three
elements; a name, description, and decimal value. Each part of the array represents a permission

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

4-7

bit that the ACL manager implements. The are several ACL bit permissions that are recommended
by OSF, listed in the table below. These are defined in <dce/aclbase.h> . To avoid confusion on
the part of administrators, these values should be used whenever they are applicable.

Permission Value
read 1
write 2
execute 4
control 8
insert 16
delete 32
test 64

4.4.9 AclMgrType
The AclMgrType attribute is reserved to define the structure and type of the ACL Manager. It
consists of a string which can contain one or more of the supported object types and one of the
structure types:

The following object types have been defined:
aclobject - supports ACLs on simple objects
defobject - supports default inheritance ACLs on objects
defcontainer - supports default inheritance ACLs on containers

The following structural attributes are defined:
flat - the database contains no hierarchical structure
hier - the database supports full hierarchy (e.g. a filesystem)
bilevel - the database does not support containers within containers
sparse - the database supports sparse searching
noleaf - the database permits hierarchy but only as a side effect of

creating a leaf

Note: only the 'flat', 'bilevel', and 'hier' structure are currently supported.

4.4.10 AuditTrail
The AuditTrail attribute represents the filename into which audit records will be created. The
special name "central" is used when the client wishes to use the central audit trail supported by the
audit daemon. The use of the central audit file is strongly encouraged.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

4-8

4.4.11 AuditFirst
The AuditFirst attribute provides the numeric value representing the first audit event. In
DCECOE a SAMS file is used to create DCE messages which will be used for audit events. The
first message number is placed in AuditFirst and the number of events are placed in AuditEvents.
The name of the SAMS component is placed in AuditMsgs. See the Application Development
Guide - Core Components Chapter 3 for more information.

Here is an example calc.sams file for the sample application:

Part I
This part defines the lowest-level table, the one that
contains
the messages (defined in the third part) in a straight array.
component cal
table cal__table
technology dce

Part II
This part defines the sub-component table, each element of
which contains the base address of one of the sub-component
message tables.
serviceability table cal_svc_table handle cal_svc_handle
start
 sub-component cal_s_manager "manager" cal_i_svc_manager
 sub-component cal_s_server "server" cal_i_svc_server
end

#
Part IIa
This part contains event codes for auditing
#
start
code add_event
text "add operation"
action ""
explanation ""
end

start
code subtract_event
text "subtract operation"
action ""
explanation ""
end

Part III

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

4-9

This part defines the serviceability messages.
#

The value of AuditFirst must match the value of the first application-defined event, in this case
add_event, from the dcecalmsg.h file (smallest_cal_message_id or add_event). The following
is an example of the dcecalmsg.h generated from the sams file above.

/* Generated from calc.sams on 1996-07-21-11:31:40.000 */
/* Do not edit! */
#if !defined(_DCE_DCECALMSG_)
#define _DCE_DCECALMSG_
#define add_event 0x10c8b001
#define subtract_event 0x10c8b002
#define cal_sad_ending 0x10c8b003
#define cal_i_svc_manager 0x10c8b004
#define cal_i_svc_server 0x10c8b005

#define smallest_cal_message_id 0x10c8b001
#define biggest_cal_message_id 0x10c8b005

#endif /* !defined(_DCE_DCECALMSG_) */

4.4.12 AuditClasses
The AuditClasses attribute is used to catalog the event classes which are distributed with this
server. An audit class is a file used to facilitate the administration of audit filters. See the OSF
DCE Administrators Guide - Core Components for more information about audit classes and
filters.

4.4.13 ServerThreads
The ServerThreads attribute represents the number of call threads that the DCE runtime creates
in order to service incoming RPC requests. This value is used in the rpc_server_listen() call
when the S_LISTEN flag is used. Use the value of 1 if the server's manager functions are not
capable of being multi-threaded.

4.4.14 DCEop
The DCEop attribute is used to collect operations to be performed when the server initializes.
These are typically dcecp commands which would be difficult to perform using programming
APIs. An example might be creating a CDS directory. This is a multi-valued attribute and will be
invoked by the server by executing dcecp as follows:

dcecp -c DCEop1; DCEop2

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

4-10

4.4.15 Service and DebugService
The Service and DebugService attributes are used to set serviceability options. Please refer to the
svc_route(5) man page for an explanation of using these serviceability settings.
The Service entry consists of three fields specify routing for non-debug serviceability messages.
The format is as follows:

 sev:out_form:dest[;out_form:dest . . .] [GOESTO:{sev | comp}]

The sev (severity) field specifies one of the following message severities: FATAL, ERROR,
WARNING, NOTICE, NOTICE_VERBOSE. The out_form (output form) field specifies
how the messages of a given severity level should be processed, and must be one of the
following: BINFILE, TEXTFILE, FILE, DISCARD, STDOUT, STDERR. The out_form
specifier may be followed by a two-number specifier of the form: .gens.count where: gens is
an integer that specifies the number of files (i.e., generations) that should be kept and count is an
integer specifying how many entries (i.e., messages) should be written to each file. The dest
(destination) field specifies where the message should be sent, and is a pathname. The field
can be left blank if the out_form specified is DISCARD, STDOUT, or STDERR. The field
can also contain a %ld string in the filename which, when the file is written, will be replaced by
 the process ID of the program that wrote the message(s). Filenames may not contain colons or
periods.

The format for the DebugService routing specifier string is:

 component:sub_comp.level,...:out_form:dest[;out_form:dest...]
 [GOESTO:{sev | component}]

Where out_form, dest, and sev have the same meanings as defined earlier in this reference
page. Nine serviceability debug message levels (specified respectively by single digits from 1 to 9)
are available. The precise meaning of each level varies with the application or DCE component
 in question, but the general notion is that ascending to a higher level (for example, from 2 to
3) increases the level of informational detail in the messages. Setting debug messaging at a certain
level means that all levels up to and including the specified level are enabled. The general
format for the debug level specifier string is:

 component:sub_comp.level,sub_comp.level,. . .

Where: component is the three-character serviceability component code for the program
whose debug message levels are being specified, sub_comp.level is a serviceability subcomponent
 name, followed (after a dot) by a debug level (expressed as a single digit from 1 to 9).
Note that multiple subcomponent/level pairs can be specified in the string. If there are multiple

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

4-11

subcomponents and it is desired to set the debug level to be the same for all of them, then the
form: component:*.level will do this (where the ``*'' specifies all subcomponents).

4.4.16 KeytabFile
The KeytabFile records the name of the keytab file and is used when access to the keytab
database is not accessible. It should match the storage attribute of the matching keytab object.

4.4.17 ClientBind
The ClientBind attribute is read by the client in order to determine what security settings to use
in contacting the server. The value of this attribute contains authentication, authorization and
binding information suitable for communicating with a DCE server. The syntax is a list of two
elements. The first element is a list of security information where the first element is the
authentication type, either none or dce, followed by information specific for each type. The
type none has no further info. The type dce is followed by a principal name, a protection level
(one of default, none, connect, call, pkt, pktinteg, or pktprivacy), an authentication service
(one of default, none, or secret), and an authorization service (one of none, name, or dce).
Examples of three security information lists are:

{none}
{dce /.:/melman default default dce}
{dce /.:/melman pktprivacy secret dce}

The second element is a list of binding information, where binding information can be string
bindings or server entry names. Two examples of binding information are:

{/.:/hosts/hostname/dce-entity /.:/subsys/dce/sec/master}
{ncadg_udp_ip:130.105.96.3[123] ncadg_udp_ip:130.105.96.6[123]}

The values are obtained by the client and used to establish the security environment for remote
procedure calls using rpc_binding_set_auth_info(3rpc). For COE applications, the suggested
entry is as shown in the sample earlier, using defaults for protection and authentication services.
Refer to the xattrschema(5rpc) man page for additional information.

4.5 Other interfaces for accessing attributes

No DCECOE interface exists for a server to obtain a list of attributes. See the standard OSF
DCE dce_inquire_server() and dce_read_server() interfaces.

Attributes are represented by the sec_attr_t data structure defined in <dce/sec_attr_base.h>. A
useful set of macros is available in <dce/sec_attr_tools.h>.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and December 20, 1996
Engineering Organization

4-12

4.6 Client configuration objects

When a client is installed, a configuration record is also created. This record is not used to start
the client, but rather to describe which services the client depends on. The only extended
attributes that are applicable in the client record are the Service, DebugService, and KeytabFile.

The most critical standard attributes for clients are the services attribute(s). There should be one
entry for each server interface used by the application. The interface defines the UUID of the
server interface, and must match the one in the server interface of the same name. The
entryname attribute contains the location of an rpcgroup or rpcprofile in CDS to begin the search
for a server. For the sample application, the search starts at /.:/h/CALC/groups/servergroup.
Note that this starting point may be anywhere in CDS, and can be configured differently for
different client machines within a cell. This allows different machines to have configurable search
paths for servers.

The following displays the configuration entries for the sample client application:

{uuid 4c31d4da-365c-11d0-9ac8-ccfc0d7baa77}
{program CALCserver}
{arguments {}}
{prerequisites {}}
{keytabs {}}
{entryname {}}
{services
 {{ifname CALC}
 {annotation {Basic calculator application}}
 {interface {0073a028-fbdb-1e53-908e-08002b13ca26 1.0}}
 {bindings {}}
 {objects {}}
 {flags {}}
 {entryname /.../gccs.smil.mil/h/CALC/groups/servergroup}}}
{principals {}}
{starton {}}
{uid 0}
{gid 0}

{dir /h/CALC/bin}

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-1 November 22, 1996
Engineering Organization

APPENDIX A - DCECOE MANUAL PAGES

This appendix provides a complete set of man reference pages for the DCECOE library. These
man pages are provided on-line in the ./DCE_API/man directory.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-2 November 22, 1996
Engineering Organization

COEDCE(3rpc)

NAME
COEDCE COE-unique DCE RPC library

SYNOPSIS
#include <dcecoe/dcecoe.h>

DESCRIPTION
Functions in the DCECOE RPC library provide a simplified mechanism for developing
client-server applications using the OSF DCE services. All of the procedure calls required
to initialize a DCE client or server are consolidated into a single procedure call. The
routines make use of sensible, but overridable, defaults to simplify the development of
applications. The DCECOE library takes advantage of and provides easy access to many
of the features of OSF DCE Version 1.1, as described below.

Functions
The DCECOE library consists of the routines listed below and described in separate man
pages.

Server-side routines:
COEDCEinitialize_server() Initializes a DCE server.
COEDCEsignal_server() Signal a server to enter listen loop.
COEDCEcreate_acl() Creates an access control list (ACL).
COEDCEis_auth() Makes an authorization decision.
COEDCEfinalize_server() Terminate server resources.

Client-side routines:
COEDCEinitialize_client() Initializes a DCE client
COEDCElocate_server() Locates a server
COEDCEgetvector() Retrieves a binding vector
COEDCEinquire_server() Gets info about a server
COEDCEstart_server() Prepare a handle for communications with a server
COEDCEfree_servers() Frees a server
COEDCEfinalize_client() Frees allocated resources

Features

Security
The security of an RPC connection can be configured to any level from unauthenticated to
authenticated and encrypted. The DCECOE routines automatically perform server login,

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-3 November 22, 1996
Engineering Organization

authentication, password maintenance, and security context refresh. They guarantee that
clients use appropriate security choices as required by servers. DCE security mechanisms
are used to identify and authenticate servers rather than inquiring of servers themselves for
security identification.

ACL Management/Reference Monitor
The server routines include an access control list (ACL) manager to allow remote
management of ACL's for the server. An application may define its own functions to be
controlled (e.g. read/write/delete for storage, print/control for a printer, view/update for
document, etc.). At built-in reference monitor makes access decisions based on the
contents of the ACL database and performs access auditing.

Server Administration
The DCECOE server library implements a management interface that allows the server to
be remotely managed using the standard dcecp file locations, and application
configurables, are maintained as extended attributes within CDS.

Server Startup
The DCECOE client library provides functions to allow a server to be started on demand
if one is not currently running.

Server Connection and Query
The client library allows the client to connect to any available server, or to locate all
available servers and retrieve information about the servers in order to make a connection
decision. Decisions can be made based on the availability of the server, the objects'
maintained by the server, or any other information agreed upon between the client and
server and recorded in the configuration information within CDS.

Auditing
The server routines maintain an audit file that can be written by the reference monitor or
the application using standard OSF DCE audit functions.

Serviceability Messages
The DCECOE library functions make use of the OSF DCE 1.1 serviceability interfaces to
generate and manage error messages. The server management interface allows messages
of different severity to be turned on or off and routed to different locations (e.g. error log,
stderr, etc.).

FILES

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-4 November 22, 1996
Engineering Organization

/usr/include/dcecoe/dcecoe.h
/usr/lib/libdcecoe.a
/opt/dcelocal/nls/msg/dcecoe.cat

SEE ALSO
DCECOEcreate_acl(3dce)
DCECOEinitialize_server(3dce)
DCECOEinitialize_client(3dce)
DCECOEis_auth(3dc
DCECOEfinalize_server(3dce)
DCECOEfinalize_client(3dce)
DCECOElocate_server(3dce)
DCECOEgetvector(3dce)
DCECOEinquire_server(3dce)
DCECOEfree_servers(3dce)
DCECOEsignal_server(3dce)
OSF DCE Application Development Guide - Core Components

NOTES
None

manual page source format generated by RosettaMan v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/ucb/people/phelps/tcltk/rman.tar.Z

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-5 November 22, 1996
Engineering Organization

COEDCEcreate_acl(3rpc)

NAME
COEDCEcreate_acl - Creates an access control list (ACL)

SYNOPSIS
#include <dcecoe.h>

error_status_t COEDCEcreate_acl(object_p_t objp);

PARAMETERS
objp

A pointer to an object structure describing the new object

DESCRIPTION
The COEDCEcreate_acl() routine creates a new ACL object. It is used by an server which
manages dynamic objects (such as a file system). It is intended to be called from a
successful create object operation (such as open(), creat()). The other way to create ACLs
is during ACL initialization (see aclsetup).

RETURN VALUES
dce_error - a DCE error is responsible for failure, see dce_error_inq_text(3)

SEE ALSO

manual page source format generated by RosettaMan v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/ucb/people/phelps/tcltk/rman.tar.Z

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-6 November 22, 1996
Engineering Organization

COEDCEfinalize_client(3rpc)

NAME
COEDCEfinalize_client - Frees allocated resources

SYNOPSIS
#include <dcecoe.h>

void COEDCEfinalize_client(
unsigned32 flags,
error_status_t *status);

PARAMETERS
flags

A set combinable option flags.

status
A pointer to a variable to hold a return status.

DESCRIPTION
The COEDCEfinalize_client() routine frees the resources belonging to the client. It is
made by a client application prior to application termination. This call is not necessary
unless COEDCEinitialize_client() returns successfully.

FLAGS
C_LOGOUT

Performs a DCE logout and destroys the associated credentials file. This option
will remove your current credentials if you did not use C_LOGIN in
COEDCEinitialize_client().

RETURN VALUES
No value is returned.

SEE ALSO
COEDCEinitialize_client()

manual page source format generated by RosettaMan v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/ucb/people/phelps/tcltk/rman.tar.Z

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-7 November 22, 1996
Engineering Organization

COEDCEfinalize_server(3rpc)

NAME
COEDCEfinalize_server - Terminate resources

SYNOPSIS
#include <dcecoe.h>

void COEDCEfinalize_server();

PARAMETERS
None

DESCRIPTION
The COEDCEfinalize_server() routine terminates any resources obtained for the server
during COEDCEinitialize_server(). This routine need not be used unless
COEDCEinitialize_server() completes successfully.

SEE ALSO
COEDCEinitialize_server()

manual page source format generated by RosettaMan v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/ucb/people/phelps/tcltk/rman.tar.Z

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-8 November 22, 1996
Engineering Organization

COEDCEfree_servers(3rpc)

NAME
COEDCEfree_servers - Frees a server

SYNOPSIS
#include <dcecoe.h>

unsigned32 COEDCEfree_servers(
server_t *servers,
unsigned32 count,
error_status_t *status);

PARAMETERS
servers

A pointer holding allocated server structures returned by a successful call to
COEDCEinquire_server() client's configuration record. servers can point to one or
more server_t structures depending on the count supplied to
COEDCEinquire_server().

count
The number of server structures pointer to by `servers' parameter.

status
A pointer to a variable used to hold the DCE return status.

DESCRIPTION
The COEDCEfree_servers() routine frees any server_t structures and associated resources
passed to it. This function should be used after the server_t structures are no longer
needed.

RETURN VALUES
bad_parameter - API arguments are malformed

SEE ALSO
COEDCEinquire_server()

manual page source format generated by RosettaMan v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/ucb/people/phelps/tcltk/rman.tar.Z

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-9 November 22, 1996
Engineering Organization

COEDCEgetvector(3rpc)

NAME
COEDCEgetvector - Retrieves a binding vector

SYNOPSIS
#include <dcecoe.h>

rpc_binding_handle_t COEDCEgetvector();

PARAMETERS
None

DESCRIPTION
The COEDCEgetvector() routine retrieves a binding vector obtained using
COEDCElocate_server().

RETURN VALUES
Returns a pointer to a vector, or NULL if none was found.

SEE ALSO
<dce/rpcbase.h> contains the definition for the rpc_binding_vector_t.
COEDCElocate_server() is used to obtain the binding vector.

manual page source format generated by RosettaMan v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/ucb/people/phelps/tcltk/rman.tar.Z

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-10 November 22, 1996
Engineering Organization

COEDCEinitialize_client(3rpc)

NAME
COEDCEinitialize_client - Initializes a client

SYNOPSIS
#include <dcecoe.h>

unsigned32 COEDCEinitialize_client(
char *segmentname,
unsigned32 flags,
error_status_t *status);

PARAMETERS
segmentname

A string containing the name of the SEGMENT. This name must conform to the
COE/DCE naming standards and consist of 4 uppercase characters. The name
supplies is postpended with ``client'' for form the name of the requisite DCED
srvrconf configuration record.

flags
A set of options which can be combined to produce a variety of client behaviors.
See the description for restrictions and a list of mandatory extended attributes
required for each flag.

status
A pointer to a variable to hold the DCE return status.

DESCRIPTION
The COEDCEinitialize_client() routine reads the client's configuration record and
performs initialization of DCE serviceability, DCE messaging, and non-interactive login
and context refresh depending on the C_LOGIN and C_REFRESH flags.

FLAGS
C_LOGIN

Performs a DCE login using a keytab file. Required DCE Attributes: keytabs,
principals Required Extended Attributes: KeytabFile

C_REFRESH
Perform login refresh (assumes login via a key file). Available only with the
C_LOGIN flag.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-11 November 22, 1996
Engineering Organization

ADDITIONAL ATTRIBUTES
Service

production level serviceability settings

DebugService
debug level serviceability settings

RETURN VALUES
bad_parameter - request arguments are malformed
bad_configuration - local DCED configuration record is missing or unusable
bad_flags - invalid or conflicting flags
dce_error - a DCE error is responsible for failure, see dce_error_inq_text(3)

manual page source format generated by RosettaMan v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/ucb/people/phelps/tcltk/rman.tar.Z

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-12 November 22, 1996
Engineering Organization

COEDCEinitialize_server(3rpc)

NAME
COEDCEinitialize_server - Initializes a DCE server

SYNOPSIS
#include <dcecoe.h>

unsigned32 COEDCEinitialize_server(
unsigned char *segmentname,
unsigned32 flags,
callbacks_p_t callbacks,
error_status_t *status);

PARAMETERS
segmentname

The segmentname of the server's SEGMENT (4 uppercase characters). This
argument is postpended with ``server" to form the configuration record name in
the DCED srvrconf database.

flags
A set of options which modify the behaviors of the server

callbacks
A pointer to a structure defining optional callbacks used for further customization
of the DCE server

status
A pointer to a variable to hold a DCE return status code.

DESCRIPTION
The COEDCEinitialize_server() routine performs comprehensive server initialization for a
DCE server. It is controlled largely by a set of attributes placed in the DCED
configuration repository and can be further customized using an array of callback
functions.

FLAGS
S_LOGIN

Perform a DCE login using a key file. Required DCE Attributes: keytabs,
principals Required Extended Attributes: KeytabFile

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-13 November 22, 1996
Engineering Organization

S_REFRESH
Perform login refresh (assumes login via a key file).

S_AUDIT
 Initializes the server for auditing Required Attributes: AuditTrail,
AuditFirst, AuditEvents, AuditMsgs, AuditClasses

S_HDATA
 Creates the `audit' hostdata entry for remote access to the audit trail file.

S_ACL
Initialize the server's ACL management/reference monitor Required
Attributes: AclSetup, AclMgrUuid, AclMgrInfo, AclMgrDesc,
AclMgrDefault, AclMgrType, DefaultAcl Optional callbacks: Use
the `objclassfunc' callback to provide object/container mapping for a multi-
level ACL manager

S_LISTEN
Perform a rpc_server_listen() rather than returning. Return after the server stops
listening.

S_WAIT
Wait until signaled via a condition variable before doing the rpc_server_listen().
See COEDCEsignal_server() for signaling.

S_CLEANUP
Perform full cleanup after returning from rpc_server_listen().

S_KEYMGMT
Perform DCE key management (i.e. changing of passwords as required by the
Registry properties).

S_MGMTAUTH
Initialize the server's management authorization function. Required
Attributes: MgmtMapping, MgmgAcl, MgmtAclMgr Optional
callbacks: Use the `mgmtauth' callback to register a user defined callback
function

S_CDSEXPORT
Export information into CDS as configured in the srvconf record.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-14 November 22, 1996
Engineering Organization

ADDITIONAL ATTRIBUTES
Service

production serviceability settings

DebugService
debug serviceability settings

DcecpOp
run the following dcecp operations during startup

ServerThreads
allow a maximum concurrency value (call threads in rpc_server_listen)

RETURN VALUES
bad_configuration - local DCED configuration record is missing or unusable

dce_error - a DCE error is responsible for failure, see dce_error_inq_text(3)

SEE ALSO
COEDCEsignal_server() - used to resume a waiting server (S_WAIT)
COEDCEserver_finalize() - used to perform cleanup when S_CLEANUP is not used

manual page source format generated by RosettaMan v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/ucb/people/phelps/tcltk/rman.tar.Z

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-15 November 22, 1996
Engineering Organization

COEDCEinquire_server(3rpc)

NAME
COEDCEinquire_server - Gets info about a server

SYNOPSIS
#include <dcecoe.h>

unsigned32 COEDCEinquire_server(
unsigned32 flags,
unsigned32 service,
unsigned32 *count,
server_t **servers,
rpc_binding_handle_t object,
error_status_t *status);

PARAMETERS
flags

A set of combinable option flags which determine the type of information returned
about the server

service
The index of the service description in the client's configuration record, about
which information is being requested

count
A pointer used to indicate the maximum number of server instances about which
data is requested

servers
pointer to a pointer used to hold allocated structures by the routine if information
was successful

handle
An RPC binding handle indicating the server host to query

status
A pointer to a variable to hold a return status.

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-16 November 22, 1996
Engineering Organization

DESCRIPTION
The COEDCEinquire_server() routine retrieves configuration information about defined
or running servers. This call uses the binding handle to contact the DCED to inquire either
the srvrconf or srvrexec databases.

Use the COEDCEfree_servers() call to return allocated storage.

FLAGS
Only one of the following flags can be used.
C_CONF

Retrieve information about a single configured server. This queries the
configuration record (template) maintained for the server.

C_EXEC
Retrieve information about `count' running servers. This returns execution state
information as well as the configuration data.

RETURN VALUES
bad_parameter - request arguments are malformed

bad_configuration - local DCED configuration record is missing or unusable

bad_flags - invalid or conflicting flags

dce_error - a DCE error is responsible for failure, see dce_error_inq_text(3)

SEE ALSO
COEDCElocate_server() is used to obtain binding vector COEDCEfree_servers() is used
to free server structures returned by COEDCEinquire_server() <dce/dced_base.h> - the
DCE header containing the server_t structure definition.

BUGS
The C_CONF option is not yet implemented.

manual page source format generated by RosettaMan v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/ucb/people/phelps/tcltk/rman.tar.Z

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-17 November 22, 1996
Engineering Organization

COEDCEis_authorized(rpc)

NAME
COEDCEis_authorized - Makes an authorization decision

SYNOPSIS
#include <dcecoe.h>

aud_esl_cond_t COEDCEis_authorized(
clientid_p_t clientp,
unsigned32 auditevent,
object_p_t objp,
dce_and_rec_t *auditrecp,
error_status_t *status);

PARAMETERS
clientp

A pointer to a structure identifying the client whose identity is used for the
authorization. This structure is allocated and initialized in the server's manager
function. For example:

COEDCEclientid_t clientid;
clientid.identity = ID_HANDLE;
clientid.handle = h;

auditevent
If non-zero, this event is used to create an audit event. This event is taken from the
message header file produced by sams. For example, if the Segment name was
``CALC", and the CALC.sams file used `cal' as the component name, including
``dcecalmsg.h'' would contain the definitions of each audit event.

objp
An object structure describing the object to be located, the permissions required,
the type of object, etc. This structure is defined in the application's manager logic.
For example:

COEDCEobject_t object;
memset(&object, 0, sizeof(object)); /* this is the ACL name in the database

*/ object.name = ``calculator";
/* this is the ACL permission value to test */ object.permname = ``a";
/* this is type of ACL object */ object.obj_type =

sec_acl_type_default_object;

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-18 November 22, 1996
Engineering Organization

auditrecp
If non-null this audit record structure will be initialized with a start audit call. The
caller is expected to commit the audit record. If NULL, the
COEDCEis_authorized() function will open and commit the audit event.

status
A pointer to a variable to hold a DCE return status in case a failure condition
occurs.

DESCRIPTION
The COEDCEis_authorized() routine makes a decision as to whether or not the client can
perform the requested function.

RETURN VALUES
One of the following audit conditions is returned:

aud_c_esl_cond_success
aud_c_esl_cond_failure
aud_c_esl_cond_denial

STATUS CODES
bad_configuration - invalid or incomplete server configuration record

bad_flags - invalid or conflicting flags

SEE ALSO
<dcecoe.h> - for definitions of the COEDCEobject and COEDCEclientid structure.
dce_aud_commit() - the DCE man page for committing an audit record.

manual page source format generated by RosettaMan v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/ucb/people/phelps/tcltk/rman.tar.Z

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-19 November 22, 1996
Engineering Organization

COEDCElocate_server(3rpc)

NAME
COEDCElocate_server - Locates a server

SYNOPSIS
#include <dcecoe.h>

unsigned32 COEDCElocate_server(
unsigned32 flags,
unsigned32 service,
unsigned32 object,
unsigned32 *count,
error_status_t *status);

PARAMETERS
flags

A set of combinable option flags

service
The index of the service description in the client's configuration record.

object
The index of the object in the service description in the client's configuration
record.

count
A pointer used to indicate the number of bindings to return to the client.

status
A pointer to a variable to hold any returned DCE status.

DESCRIPTION
The COEDCElocate_server() routine locates servers based on the service definition in the
clients configuration record and makes available a set of binding handles for use in
communicating with appropriate servers or for interrogating using
COEDCEinquire_server().

FLAGS
C_NOOBJ

Do not return objects in the bindings obtained

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-20 November 22, 1996
Engineering Organization

RETURN VALUES
bad_parameter - request arguments are malformed

bad_configuration - local DCED configuration record is missing or unusable

bad_flags - invalid or conflicting flags
dce_error - a DCE error is responsible for failure, see dce_error_inq_text(3)

The returned information is a rpc_binding_vector_t obtained using COEDCEgetvector()

manual page source format generated by RosettaMan v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/ucb/people/phelps/tcltk/rman.tar.Z

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and A-21 November 22, 1996
Engineering Organization

COEDCEsignal_server(3rpc)

NAME
COEDCEsignal_server - Signal a server to enter listen loop

SYNOPSIS
#include <dcecoe.h>

void COEDCEsignal_server();

PARAMETERS
None

DESCRIPTION
The COEDCEsignal_server() routine causes a server started with S_WAIT flag to
continue, thereby entering its listen loop. This is used when a server should become DCE
ready without beginning processing prior to receipt of a special signal.

SEE ALSO
COEDCEinitialize_server()

manual page source format generated by RosettaMan v2.5a6,available via anonymous ftp from
ftp.cs.berkeley.edu:/ucb/people/phelps/tcltk/rman.tar.Z

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Version 1.0.0.0

Joint Interoperability and November 22, 1996
Engineering Organization

B-1

APPENDIX B - SAMPLE APPLICATION

calc.idl

/* Sample Application client/server interfaces */

[
uuid(0073a028-fbdb-1e53-908e-08002b13ca26),
version(1.0)
]

interface calculator
{
 import "dce/database.idl";

 const long calc_s_ok = 0;
 const long calc_div_by_zero = 100;

 long
 add (

[in] long a,
[in] long b,
[out] error_status_t *st

);

 long
 subtract (

[in] long a,
[in] long b,
[out] error_status_t *st

);
}

calc.acf

/* Sample Application */

[explicit_handle]
interface calculator
{

add([comm_status] st);
subtract([comm_status] st);

}

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Version 1.0.0.0

Joint Interoperability and November 22, 1996
Engineering Organization

B-2

calc.sams

Sample Application messages for audit events and application
serviceability
#

Part I
This part defines the lowest-level table, the one that
contains all the
messages (defined in the third part) in a straight array.
component cal
table cal__table
technology dce

Part II
This part defines the sub-component table, each element of
which
contains the base address of one of the sub-component message
tables.
serviceability table cal_svc_table handle cal_svc_handle
start
 sub-component cal_s_manager "manager" cal_i_svc_manager
 sub-component cal_s_server "server" cal_i_svc_server
end

#
Part IIa
This part contains event codes for auditing
#
start
code add_event
text "add operation"
action ""
explanation ""
end

start
code subtract_event
text "subtract operation"
action ""
explanation ""
end

Part III
This part defines the serviceability messages.
#

start

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Version 1.0.0.0

Joint Interoperability and November 22, 1996
Engineering Organization

B-3

code cal_sad_ending
sub-component cal_s_server
attributes "svc_c_sev_error"
text "server initialize failed"
action ""
explanation ""
end

#
Part IIIa
Messages for serviceability table
#
Note that there has to be one of these for each of
the sub-components declared in the second part of
the file (above)...

start !intable undocumented
code cal_i_svc_manager
text "Manager"
end

start !intable undocumented
code cal_i_svc_server
text "Server"
end

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Version 1.0.0.0

Joint Interoperability and November 22, 1996
Engineering Organization

B-4

CALCclient.c

/* Sample client application */

#include <dcecoe/dcecoe.h>
#include "calc.h"

#define SEGMENTSERVICE "CALC"

rpc_binding_handle_t simple(void);
rpc_binding_handle_t complex(void);

main(int argc, char **argv)
{
 unsigned32 err; /* COE error */
 error_status_t dceerr; /* DCE error */
 rpc_binding_handle_t handle;

 /* interface client logic */
 idl_long_int a, b, c;
 char operand;
 error_status_t st;
 int rc;

 err = COEDCEinitialize_client(SEGMENTSERVICE, 0, &dceerr);
 if (CHECK(err, "initialize_client", dceerr))

exit(1);
#if 1
 handle = simple();
#else
 handle = complex();
#endif

 if (handle == NULL) {
printf("server not installed correctly\n");

 exit(1);
 }

 err = COEDCEstart_server(C_PING|C_START|C_SECURE, 0, handle,
&dceerr);
 if (CHECK(err, "start_server", dceerr))
 exit(1);

 /* user interaction */
 while (true) {

fprintf(stdout, "Operation: (op val1 val2) ");
fflush(stdout); fflush(stdin);

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Version 1.0.0.0

Joint Interoperability and November 22, 1996
Engineering Organization

B-5

rc = fscanf(stdin, "%c %ld %ld", &operand, &a, &b);
if (operand == 'q') break;
switch (operand) {
case '+':
 c = add(handle,a,b,&st);
 break;
case '-':
 c = subtract(handle,a,b,&st);
 break;
default:
 fprintf(stderr, "Invalid operand\n"); continue;
}
if (st == calc_s_ok)

 fprintf(stdout, "%ld %c %ld = %ld\n", a, operand, b,
c);

else
 CHECK_STATUS(st, "operation failed", CONTINUE);
(void *)fgetc(stdin);

 }

 COEDCEfinalize_client(0, &st);
}

rpc_binding_handle_t
simple(void)
{
 unsigned32 count = 2;
 unsigned32 err;
 error_status_t dceerr;

 err = COEDCElocate_server(0, 0, 0, &count, &dceerr);
 if (CHECK(err, "locate_server", dceerr) || count < 1)

return NULL;
 else

return (COEDCEgetvector())->binding_h[0];
}

rpc_binding_handle_t
complex(void)
{
 unsigned32 count = 100;
 unsigned32 one = 1;
 rpc_binding_handle_thandle = NULL;
 server_t *servers;
 int i;
 unsigned32 err;
 error_status_t dceerr;

 err = COEDCElocate_server(C_NOOBJ, 0, 0, &count, &dceerr);
 if (CHECK(err, "locate_server", dceerr) || count < 1)

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Version 1.0.0.0

Joint Interoperability and November 22, 1996
Engineering Organization

B-6

return NULL;

 for (i=0; i<count; i++) {
 err = COEDCEinquire_server(C_EXEC, 0, &one, &servers,

(COEDCEgetvector())->binding_h[i], &dceerr);
 if (CHECK(err, "inquire_server", dceerr) || count < 1)

 continue;

/* pick one based on some criteria */

handle = (COEDCEgetvector())->binding_h[i];
 err = COEDCEfree_servers(servers, one, &dceerr);
 CHECK(err, "free_servers", dceerr);

/* we found one we liked */
if (handle)
 break;

 }

 return handle;
}

CHECK(unsigned32 err, char *msg, error_status_t dceerr)
{
if (err == 0) return err;
 if (err == dce_error)
 dce_printf(dceerr);
 else

dce_printf(err);
 return err;
}

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Version 1.0.0.0

Joint Interoperability and November 22, 1996
Engineering Organization

B-7

CALCserver.c

/* Sample server initialization code */

#include <dcecoe/dcecoe.h> /* for use with COEDCE APIs */

#include "calc.h"

#define SEGMENTSERVICE "CALC"

main(int argc, char **argv)
{
 error_status_t st;

 COEDCEinitialize_server(SEGMENTSERVICE,
 S_LOGIN|S_REFRESH|S_KEYMGMT|S_ACL|S_AUDIT|
 S_CDSEXPORT|S_LISTEN|S_CLEANUP|S_MGMTAUTH,
 NULL, &st);

 exit (st != rpc_s_ok);
}

CALCmanager.c

/* Sample Manager code - server */

#include <dcecoe/dcecoe.h>

#include "calc.h" /* build by IDL */
#include "dcecalmsg.h" /* built by SAMS - audit codes */

idl_long_int
add (rpc_binding_handle_t bh,
 idl_long_int a,
 idl_long_int b,
 unsigned32 *st)
{
 COEDCEclientid_tclient;
 COEDCEobject_t object;

 /* this is how we identify the client */
 client.identity = ID_HANDLE;
 client.id.handle = bh;

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s
Guide Version 1.0.0.0

Joint Interoperability and November 22, 1996
Engineering Organization

B-8

 /* this represents the object to look up and the requisite
perms. */
 memset(&object, 0, sizeof(object));
 object.name = "calculator";
 object.permname = "a"; /* add */

 if (COEDCEis_authorized(&client, add_event, &object, NULL,
st) ==

aud_c_esl_cond_success)
 return(a+b);

 /* st has status code */
 return -1;
}

idl_long_int
subtract (
 rpc_binding_handle_t bh,
 idl_long_int a,
 idl_long_int b,
 unsigned32 *st)
{
 COEDCEclientid_tclient;
 COEDCEobject_t object;

 /* this is how we identify the client */
 client.identity = ID_HANDLE;
 client.id.handle = bh;

 /* this represents the object to look up and the requisite
perms. */
 memset(&object, 0, sizeof(object));
 object.name = "calculator";
 object.permname = "s"; /* subtract */

 if (COEDCEis_authorized(&client, add_event, &object, NULL,
st) ==

aud_c_esl_cond_success)
 return(a-b);

 return(-1);
}

DII COE Supplemental Consolidated DCE Application Development Tools Programmer’s Guide
Version 1.0.0.0

Joint Interoperability and November 22, 1996
Engineering Organization

C-1

APPENDIX C - Acronyms

ACL Access Control List
API Application Programming Interface

CDS Cell Directory Service
CFS Center for Standards
COE Common Operating Environment
COTS Commercial off-the-shelf
C3I Command, Control, Communications and Intelligence
C4I Command, Control, Communications, Computers, and Intelligence

DCE Distributed Computing Environment
dced DCE daemon
dcecp DCE Control Program
DFS Distributed File System
DII Defense Information Infrastructure
DISA Defense Information Systems Agency
DNS Domain Name Service
DTS Distributed Time Service
dtsd Distributed Time Service Daemon

ERA Extended Registry Attribute

GCCS Global Command and Control System
GCSS Global Combat Support System
GDS Global Directory Service
GPS Global Positioning System

LAN Local Area Network

NFS Network File System
NTP Network Time Protocol

OSF Open Software Foundation

RPC Remote Procedure Call

WAN Wide Area Network

